Zuschriften

Fluoro-Sulfur Compounds

DOI: 10.1002/ange.200503320 **Synthesis of the Long Sought After Compound** Pentafluoronitrosulfane, SF₅NO₂**

Norman Lu,* H. P. Sampath Kumar, James L. Fye, Jian Sun Blanks, Joseph S. Thrasher,* Helge Willner, and Heinz Oberhammer

The chemistry of SF₅-containing molecules^[1-3] is no longer just of interest to sulfur and fluorine chemists. Recently, this class of compounds has become a very important issue in the area of atmospheric chemistry. According to a recent report, more than 4000 tons of the super greenhouse gas SF₅CF₃ are present in the stratosphere. [4-6] In addition, scientists have also proposed the use of molecules such as SF5CF3, SF6, fluoroalkanes, and so on to terraform Mars.[7]

[*] Prof. Dr. N. Lu

Department of Molecular Science and Engineering National Taipei University of Technology

Taipei 106 (Taiwan) Fax: (+886) 227-317-174 E-mail: normanlu@ntut.edu.tw

Dr. H. P. S. Kumar, J. L. Fye, Dr. J. Sun Blanks, Prof. Dr. J. S. Thrasher

Department of Chemistry The University of Alabama Tuscaloosa, AL 35487 (USA)

Fax: (+1) 205-348-9104 E-mail: fluorine@bama.ua.edu

Prof. Dr. H. Willner FB C Anorganische Chemie Universität Wuppertal

Gaussstrasse 20, 42119 Wuppertal (Germany)

Prof. Dr. H. Oberhammer

Institut für Physikalische und Theoretische Chemie

Universität Tübingen 72076 Tübingen (Germany)

[**] The authors gratefully acknowledge the support of The University of Alabama. N.L. thanks Dr. J. C. Jiang (Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan) for MP2 calculations.

As a number of simple SF₅-containing compounds are still unknown although the corresponding CF3 analogues have been well documented, we undertook the preparation of the long sought after molecule SF₅NO₂.^[8] Both the thermal and photochemical reactions of SF₅ radical sources such as SF₅Cl, SF₅Br, and S₂F₁₀ have been reviewed recently by Lentz and Seppelt; [9] however, we had to make use of either a new SF₅ radical source in (SF₅)₃N or a different light source to the more commonly used mercury immersion lamp, namely, diazo or superblue lamps ($\lambda_{\text{max}} = 420 \text{ nm}$). Thus, SF₅NO₂ was successfully prepared by two independent methods: A) the thermal reaction of (SF₅)₃N with nitrogen dioxide, NO₂ [Eq. (1)], and B) the photochemical reaction between SF₅Br and NO₂ [Eq. (2)]. Herein, we provide an overview of the

$$(SF_5)_3N + NO_2 (excess) \rightarrow SF_5NO_2 + side products$$
 (1)

$$SF_5Br + NO_2 (excess) \xrightarrow{\lambda_{max} = 420 \text{ nm}} SF_5NO_2 + \text{ side products}$$
 (2)

spectroscopic and physical properties and structure of SF₅NO₂, as this molecule has the longest S^{VI}_N bond reported to date.

Two methods were used to prepare SF₅NO₂, starting either from the novel amine, (SF₅)₃N (method A), or from SF₅Br (method B).^[10] Owing to its elongated and weak N-S bonds, (SF₅)₃N readily forms (SF₅)₂N^[11,12] and SF₅ radicals, which in turn react with NO2 (or with NO2Cl) at room temperature to generate SF₅NO₂. By method A, SF₅NO₂ was prepared for the first time by taking advantage of the weak N-S bonds in (SF₅)₃N in its reaction with NO₂. [13] The ¹⁹F NMR spectrum of the SF₅NO₂ thus obtained displayed a typical AB₄ pattern, which is characteristic of the SF₅ group. Furthermore, the IR spectrum of SF₅NO₂ showed the diagnostic stretches and bends for both the SF5 and NO2 moieties. The SF₅ group usually displays three strong vibrational peaks below 1000 cm⁻¹; in SF₅NO₂, these appeared at 908, 801, and 594 cm⁻¹. The two NO₂ stretching bands in SF₅NO₂ were unambiguously assigned as $\tilde{\nu}_{as}$ NO₂ = 1654 cm⁻¹ and $\tilde{v}_s NO_2 = 1303 \text{ cm}^{-1}$, respectively.

As a result of the limited availability of (SF₅)₃N, SF₅Br was tested as an alternative source of the SF₅ radical in method B. The photochemical reaction between SF₅Br and NO₂ successfully yielded SF₅NO₂ as shown in Equation (2). It is thought that during the photolysis, first, SF₅ and Br radicals are formed during the irradiation, which then react with NO₂ individually. Both BrNO2 and BrONO can be formed from the Br radical.^[14] The N-bonded product, BrNO₂, is the thermodynamically more stable product, while the O-bonded product, BrONO, is favored kinetically. The N-bonded product can also be formed by attack at the rear side on BrONO by the nitrogen atom of another NO₂ molecule, with elimination of NO₂ as described by Broske and Zabel. ^[15] The SF₅ radical behaves similarly. Both SF₅NO₂ and SF₅ONO are presumed to be formed during the photochemical reaction. (SF₅ONO is a short-lived species that is thought to have been observed by FTIR spectroscopy during the reaction of (SF₅)₃N with NO₂ at room temperature.) However, in this case attack by NO2 on SF5ONO from the rear side is impossible owing to the bulkiness of the SF₅ group. SF₅NO₂ was isolated in only 3% yield based on SF_5Br used in this reaction. Presumably, a large proportion of SF_5 radicals that were generated during the reaction decomposed before having the opportunity to react. CsF was used to ease the purification of SF_5NO_2 through the concept of fluoride ion affinity. As shown in Equations (3) and (4), CsF is used to

$$CsF + SOF_4 \rightarrow Cs^+SOF_5^-$$
 (3

$$CsF + SF_4 \rightarrow Cs^+SF_5^- \tag{4}$$

remove SF_4 and SOF_4 by salt formation. The use of CsF also helps to remove Br_2 and converts NO_2 into FNO. Some of these side products are almost impossible to remove by distillation from SF_5NO_2 without such treatment with CsF. The crude SF_5NO_2 was then purified by low-temperature trap-to-trap distillation.

The ¹⁹F NMR spectrum of SF_5NO_2 revealed an AB_4 pattern. The simulated NMR data are $\delta=46.79$ ppm (F_{ax}) , $\delta=43.02$ ppm (F_{eq}) , and coupling constant $^2J(F_{ax}-F_{eq})=144.3$ Hz. In addition, the ¹⁴N NMR spectrum of SF_5NO_2 was recorded and is shown in Figure 1. The spectrum does not reveal perfect quintet splitting because of the quadrupolar effects of the ¹⁴N nucleus (¹⁴N NMR (versus external reference NO_3^- at $\delta=383$ ppm): $\delta=283.8$ ppm; $^2J(F-N)=8$ Hz).

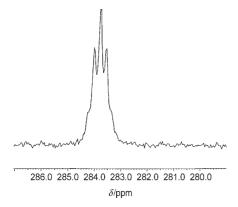


Figure 1. 14N NMR spectrum of SF₅NO₂.

The IR spectrum of SF_5NO_2 is shown in Figure 2. In Table 1, the $\tilde{v}_{as}NO_2$ and \tilde{v}_sNO_2 vibrational frequencies of NO_2 are compared to XNO_2 (X=F, CF_3 , and SF_5). As a result of the inductive effects of the strong electron-withdrawing substituents (F, CF_3 , and SF_5), the $\tilde{v}_{as}NO_2$ and \tilde{v}_sNO_2 stretching frequencies of these three compounds are all shifted to higher frequencies relative to those for the NO_2 molecule.

A mass spectrum of SF_5NO_2 was obtained and shows the fragmentation pattern, m/z 127 (SF_5^+ , 100%), 108 (SF_4^+ , 6.7%), 89 (SF_3^+ , 51.0%), 81 ($SFNO^+$, 1.5%), 70 (SF_2^+ , 11.5%), 64 (SO_2^+ , 12.1%), 51 (SF^+ , 5.9%), 46 (NO_2^+ , 69.3%). Although the molecular ion was not observed, the mass spectrum did reveal fragments at m/z 46 and 127 that indicate the presence of NO_2^+ and SF_5^+ , respectively. In addition, the

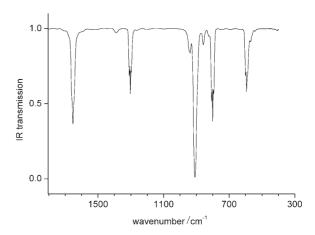


Figure 2. IR spectrum of SF₅NO₂.

Table 1: IR spectral data for the NO_2 moiety in XNO_2 (X = F, CF_3 , SF_5) versus the NO_2 molecule.^[a]

Compound	$\tilde{\nu}_{as}NO_2[cm^{-1}]$	$\tilde{v}_{s} \text{NO}_{2} [\text{cm}^{-1}]$	$\delta\mathrm{NO_2}\mathrm{[cm^{-1}]}$
NO ₂	1613	1261	751
FNO ₂ ^[16]	1792	1310	822
SF ₅ NO ₂ ^[b] (this work)	1654	1303	801
CF ₃ NO ₂ ^[17,18]	1627	1310	751

[a] $\tilde{\nu}_{as}$ asymmetric stretch; $\tilde{\nu}_{s}$ symmetric stretch; δ bending mode. [b] For SF₅¹⁵NO₂, the ¹⁵NO₂ frequencies are $\tilde{\nu}_{as}$ NO₂=1618, $\tilde{\nu}_{s}$ NO₂=1287, and δ NO₂=793 cm⁻¹.

peak at m/z 81, which corresponds to SFNO⁺, provided evidence that the two previously mentioned fragments are originally bonded together. By gas density measurements, the relative molecular mass was determined as $M_{\rm r}=173.0\pm0.5$. The equation derived from the vapor pressure curve is $\ln(p/p_{\rm o})=-3788/T~+~13.33$. The normal extrapolated boiling point for SF₅NO₂ was determined as 9 °C, its heat of vaporization is approximately 29.3 kJ mol⁻¹, and it melts at -78 ± 2 °C. Thermal studies of SF₅NO₂ indicate that it mainly decomposes to SOF₄ and FNO at a rate of 3 % a day at room temperature, but when heated at 80 °C total decomposition took place within minutes.

A gas-phase electron diffraction study of SF_5NO_2 was carried out. The preliminary data, as shown in Figure 3, reveal the longest reported S^{VI} —N bond at 1.903(7) Å, which is some 0.2 Å longer than a normal S^{VI} —N single bond. Quantum chemical calculations (HF/6-31 G* and B3LYP/6-311 + G*) predict rather different values for the S^{VI} —N bond from 1.844 Å to 2.049 Å. Further details of this structure^[19] will be reported at a later date.

The goal of this research was to synthesize both SF_5NO_2 and SF_5NO . Here, SF_5NO_2 was successfully prepared by two independent methods but SF_5NO remains unknown. Of the two routes used to prepare SF_5NO_2 , one employed the novel amine $(SF_5)_3N$ as a starting material while the other started from SF_5Br . Because $(SF_5)_3N$ is extremely difficult to prepare, the second route was the preferred method for preparing gram quantities of SF_5NO_2 . Along the way, a modified procedure for preparing SF_5Br on a 500-gram scale was developed.

Zuschriften

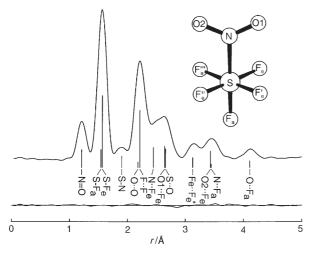


Figure 3. The structure of SF₅NO₂ obtained from gas-phase electron diffraction studies.

The success of the photochemical preparative method for SF₅NO₂ is based on the use of blue light from a diazo lamp $(\lambda_{\text{max}} = 420 \text{ nm})$, as the molecule NO₂ photodissociates at wavelengths shorter than 395 nm as associated with the use of a mercury immersion lamp. The former source of irradiation excites the NO₂ molecule, and the excited NO₂ molecule is believed to further participate in the formation of SF₅ radicals. The molecule SF₅NO₂ has also been studied as a ¹⁵N-labeled compound. The IR spectrum of SF₅¹⁵NO₂ shows the expected mass effects of the ¹⁵N isotope. The ¹⁵N NMR spectrum of SF₅¹⁵NO₂ shows a clear quintet splitting (15N NMR (vs external reference NO₃⁻ at $\delta = 383$ ppm): $\delta =$ 283.4 ppm (quintet), ${}^{2}J(F-N) = 11.6 \text{ Hz}$), and its ${}^{19}F \text{ NMR}$ spectrum shows additional multiplicities in the equatorial fluorines (AB₄X spin system). The structural data obtained from gas-phase electron diffraction studies indicate the longest SVI-N single bond reported. Further details concerning this study will appear in due course.

Experimental Section

Preparation of SF₅NO₂: Method A: The amine (SF₅)₃N (0.36 g, 0.90 mmol) was transferred under vacuum into a fluorinated ethylene propylene (FEP) tube equipped with a metal valve. Nitrogen dioxide (0.12 g, 2.60 mmol) was then condensed into the FEP tube at $-196 \,^{\circ}\text{C}$, and the reaction vessel was allowed to gradually warm to room temperature. After 4 h, all of the (SF₅)₃N crystals had disappeared. The volatile products were subjected to a series of distillations through -105, -130, and -196 °C traps. The -130 °C trap stopped the crude SF₅NO₂. The percentage yield was not calculated owing to the difficult purification of the product.

Method B: SF₅Br (3.9 g, 18.8 mmol) and NO₂ (0.9 g, 19.6 mmol) were transferred to a 4-L or 20-L pyrex reactor. A photolysis chamber with 12 diazo lamps (TL40W/03; each 40 W, 48 inches (ca. 122 cm) long) was used to photolyze this mixture. After 12 h irradiation, the resulting products were condensed into a 300-mL stainless-steel cylinder held at -196 °C. This cylinder was then warmed to dry-ice temperature (-78 °C), and all the materials that are volatile at this temperature were then transferred under vacuum into another cylinder cooled to -196°C containing 400 grams (large excess) of CsF, which was used to easily remove Br₂, SOF₄, and SF₄ and also to convert NO2 into FNO. Then, a trap-to-trap distillation through traps at -78°C, -130°C, and -196°C was carried out to separate SF₅NO₂ from impurities such as FNO and SF₆. The product SF₅NO₂ (0.09 g, 0.56 mmol; 3 % yield) was recovered in the trap at -130 °C.

Received: September 19, 2005 Published online: December 30, 2005

Keywords: atmospheric chemistry · fluorine · nitro compounds · photolysis · sulfur

- [1] A. Senning, Sulfur in Organic and Inorganic Chemistry, Vol. 4, Dekker, New York, 1982.
- [2] O. Lösking, H. Willner, Angew. Chem. 1989, 101, 1283; Angew. Chem. Int. Ed. Engl. 1989, 28, 1255.
- [3] J. S. Thrasher, K. V. Madappat, Angew. Chem. 1989, 101, 1285; Angew. Chem. Int. Ed. Engl. 1989, 28, 1256.
- [4] W. T. Sturges, T. J. Wallington, M. D. Hurley, K. P. Shine, K. Sihra, A. Engel, D. E. Oram, S. A. Penkett, R. Mulvaney, C. A. M. Brenninkmeijer, Science 2000, 289, 611.
- [5] M. A. Santoro, Science 2000, 290, 935.
- [6] D. Grossman, Greenhouse Gas Demystified, http://www.glrc.org/ story.php3?story_id = 1100 (accessed July 2001).
- [7] M. F. Gerstell, J. S. Francisco, Y. L. Yung, C. Boxe, E. T. Aaltonee, Proc. Natl. Acad. Sci. USA 2001, 98, 2154.
- [8] M. D. Vorb'ev, A. S. Filatov, M. A. Englin, Zh. Obshch. Khim. 1974, 44, 2724.
- "The SF₅, SeF₅, and TeF₅ Groups in Organic Chemistry": D. Lentz, K. Seppelt in Chemistry of Hypervalent Compounds (Ed.: K. Akiba), Wiley-VCH, New York, 1999, pp. 295-325, and reference therein.
- [10] R. Winter, R. Terjeson, G. L. Gard, J. Fluorine Chem. 1998, 89, 105.
- [11] "Synthesis of New Amines Containing Pentafluorosulfur Groups": J. B. Nielsen, PhD Dissertation, University of Alabama, Tuscaloosa, 1988.
- [12] a) J. S. Thrasher, J. B. Nielsen, J. Am. Chem. Soc. 1986, 108, 1108; b) M. R. Choudhury, J. W. Harrell, Jr., J. B. Nielsen, J. S. Thrasher, J. Chem. Phys. 1988, 89, 5353.
- [13] "Preparation, Characterization, and Properties of SF5NO2, and Related Compounds": N. Lu, PhD Dissertation, University of Alabama, Tuscaloosa, 2001.
- [14] D. Scheffler, H. Grothe, H. Willner, A. Frenzel, C. Zetzsch, Inorg. Chem. 1997, 36, 335.
- [15] R. Broske, F. Zabel, J. Phys. Chem. A 1998, 102, 8626.
- [16] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1986.
- Gmelin Handbuch, F perfluorhalogenoorgano-Verbindungen, Vol. 8, Springer, Berlin, 1980, pp. 2-18, and references therein.
- [18] N. Lu, J. S. Thrasher, J. Fluorine Chem. 2002, 117, 181.
- [19] N. Lu, J. S. Thrasher, S. von Ahsen, H. Willner, D. Hnyk, H. Oberhammer, unpublished results.

954